
 i

 4

M U N I C I P A L S Y S TE M S

BIG BRUTE

Large Diameter Pressure Pipe
14"-48" ($350 \mathrm{~mm}-1200 \mathrm{~mm}$)
Performance Under Pressure

Big Brute ${ }^{\circledR}$ Large Diameter PVC Pressure Pipe is available in cast iron outside diameters in a variety of pressure ratings for use in many applications. Its innovative design and quality construction guarantees the safe and reliable conveyance of potable water and sewage.

APPLICATIONS

Big Brute pipe is the ideal choice for:

- Distribution Lines
- Transmission Mains
- Force Mains
- Irrigation Systems
- Fire Protection Lines
- Gravity Sewer Mains

ADVANTAGES

Corrosion Proof

Big Brute pipe is immune to naturally corrosive soils, electrochemical action and galvanic corrosion. This ensures lower maintenance costs and longer performance life.

Two Reserves of Strength

Big Brute pipe offers two reserves of strength, long-term and short-term. Pressure ratings are established for longterm sustained pressure applications, incorporating a 2:1 safety factor. Big Brute also handles short-term transient surge pressures equal to 60% greater than the pressure ratings, while maintaining a $2: 1$ safety factor.

The following long-term and short-term design pressure capacities are available.

| Dimension | Nominal Pressure Rating
 $(2: 1$ Safety | | Surge Pressure Capacity |
| :---: | :---: | :---: | :---: | :---: |
| Ratio | psi | kPa | (2:1 Safety Factor) |

High Flow Capacity

Big Brute pipe has a Hazen-Williams friction coefficient of 150 , providing high flow capacities. The extremely smooth interior wall eliminates turbulence and prevents scaling produced by hard water. This higher flow capacity can also provide a substantial reduction in pumping costs.

Withstands Vacuum Pressure

Big Brute pipe can easily withstand vacuum pressures of $-11 \mathrm{psi}(-75 \mathrm{kPa})$ or 22 " of mercury.

2:1 Safety Factor)

Tight Joints

The IPEX gasket joint is designed for unequalled performance and ease of installation. The joints can withstand 3.2 times their pressure rating without leakage.

Easy to Handle

Big Brute pipe requires less effort to move and install than conventional pipe. Cutting and bevelling can easily be done onsite using standard tools.

Big Brute pipe also comes with dual insertion marks for easier inspection. Installation is complete when only one insertion mark is visible, making the verification of proper joint assembly a simple process for inspectors.

Each Pipe Tested

Big Brute pipe is hydrostatically tested to two times its pressure rating. This assures the user of total integrity of every length of pipe manufactured.

Fabricated Fittings

Fabricated fittings are available for large diameter pipe. They are made from segments of AWWA C905 PVC pipe, butt fused or bonded together and overwrapped with fibreglass-reinforced polyester. The pressure ratings match the pipe. The fittings are available as meeting the requirements of AWWA C905 and third-party certified to CSA B137.3.

Compatibility

Big Brute pipe has the same outside diameter as cast-ductile-iron pipe. Auxiliary equipment such as restraint devices, tapping saddles, corporation stops and fittings can be easily used with our Big Brute pipe.

STANDARDS

Big Brute pipe meets these standards:

The following tests are performed on Big Brute pipe to ensure the highest quality for our customers:

Dimensional Tests:

Big Brute pipe must pass a series of dimensional checks at $73^{\circ} \mathrm{F}\left(23^{\circ} \mathrm{C}\right)$.

Flattening Tests:

A pipe specimen is placed between two flat parallel plates and compressed until the distance between the plates is 5% of the original outside diameter of the pipe, or the walls of the pipe touch within two to five minutes at uniform loading. There shall be no evidence of splitting. This test exceeds the AWWA C905 requirement.

Hydrostatic Proof

Tests: Each piece of pipe, from 14 " to 48 " (350 mm to 1200 mm), is subjected to a hydrostatic pressure equal to twice its nominal pressure rating for five seconds. This quality assurance test is carried out in compliance with the AWWA C905 standard.

Joint Tests: Joints in axial deflection must maintain a vacuum pressure of $-11 \mathrm{psi}(-75 \mathrm{kPa})$ or 22 " of mercury, a hydrostatic pressure equal to 2.5 times the pressure rating of the pipe for 60 minutes, and a pressure level equal to the minimal burst pressure. These conditions are set by the ASTM D3139 method in compliance with the AWWA C905 and CSA B137.3 standards.

Short-Term Pressure Tests: Random pieces of IPEX pipe are subjected to a gradual increase in hydrostatic pressure over a specific short-term period (60 to 70 seconds). These tests conform to ASTM D1599 and CSA B137.3.

Dimension	Minimum Burst Pressure	
Ratio	psi	kPa
DR51	255	1760
DR41	320	2200
DR32.5	405	2800
DR25	530	3600
DR18	752	5190
DR14	980	6780

The above pressure ratings are based on a short-term hoop stress of 44.20 MPa ($6,400 \mathrm{psi}$) and are equal to 3.2 times the nominal pressure.

Sustained Pressure Tests: In order to ensure the minimum hydrostatic design basis of at least $4,000 \mathrm{psi}(27.58 \mathrm{MPa})$, testing is carried out in compliance with AWWA C905 and CSA B137.3 standards. When subjected to the hydrostatic pressures below, pipe must show no signs of cracking or leakage. This qualification test is conducted for 1,000 hours.

Dimension Ratio	Minimum Pressure psi	kPa
	168	1160
DR51	210	1450
DR41	267	1840
DR32.5	350	2420
DR25	495	3410
DR18	615	4243

Big Brute is manufactured from a 12454B certified compound, in accordance with the ASTM D1784 standard. The minimum HDB for this CSA certified compound must be no less than $4,000 \mathrm{psi}(27.58 \mathrm{MPa})$. The compound can then be given a hydrostatic design stress, expressed by the following equation:

$$
\begin{aligned}
S & =\frac{H D B}{F} \\
\text { Where } & =\text { design stress } \\
\text { HDB } & =\text { hydrostatic design basis } \\
F & =\text { factor of safety }
\end{aligned}
$$

For complete design and installation guidelines:

IPEX Installation Guide of PVC Pressure
Pipe and Fittings is available free from
your nearest Customer Service Center, IPEX sales representative or distributor.

The design stress is then used to calculate Big Brute pipe's long-term pressure rating in accordance with the International Standards Organization (ISO) equation:

$$
P=\frac{2 S}{D R-1}
$$

where

$=$ long-term pressure rating
$S=$ design stress
DR = outside diameter divided by wall thickness

Example:

The long-term pressure rating for a 16 " (400 mm) DR25 pipe is calculated as follows:
If $O D=17.4 \mathrm{in}$. $(442 \mathrm{~mm})$
$\mathrm{t}=.697 \mathrm{in} .(17.7 \mathrm{~mm})$
HDB $=4,000 \mathrm{psi}(27.58 \mathrm{MPa})$
$\mathrm{F}=2.0$

$$
D R=\frac{O D}{t}=\frac{17.4}{.697}=25
$$

where:
OD = outside diameter

To calculate design stress:
$S=\frac{H D B}{F}=\frac{4000}{2}=2,000 \mathrm{psi}(13.79 \mathrm{MPa})$

To calculate the long-term pressure rating:

Uni-Bell handbook of PVC Pipe, Design and Construction
This comprehensive reference manual, with over 470 pages, covers all aspects of design and installation for PVC pipe and fittings.

Available through:

Uni-Bell PVC Pipe Association
2655 Villa Creek Drive
Suite 155
Dallas, Texas, U.S.A. 75234
теL (214) 243-3902
FAX (214) 243-3907
IPEX
6810 Invader Crescent

$$
\mathrm{t}=\text { wall thickness }
$$

Mississauga, Ontario, Canada
L5T 2B6
TEL (905) 670-7676
US TOLL FREE (800) 463-9572
FAX (905) 670-5295

SHORT FORIM SPECIFICATIONS

General

Pipe must conform to AWWA C905 and be certified to CSA B137.3 "Rigid Poly (Vinyl Chloride) (PVC) Pipe for Pressure Applications." DR51, 41, 32.5, 25, 18 and 14 pipe must have the following pressure ratings: $80 \mathrm{psi}(550 \mathrm{kPa}), 100 \mathrm{psi}(690 \mathrm{kPa}), 125 \mathrm{psi}$ (860 kPa), 165 psi (1140 kPa), 235 psi (1 620 kPa) and $305 \mathrm{psi}(2100 \mathrm{kPa})$. For pressure applications, each length of pipe must be hydro-tested at twice the rating and a shortterm pressure test must be conducted once per production run. Pipe to be IPEX Big Brute ${ }^{\circledR}$ or approved equal.

Fabricated Fittings

Fabricated fittings shall be made from segments of AWWA C905 pipe that are butt fused or bonded together and over-wrapped with fibreglass-reinforced polyester. The fittings must always meet the pressure rating of the pipe system.

Percent (\%) Deflection for Big Brute Pressure Pipe

ASTMEMBEDMENTMATERIALCLASSIFICATION		$\begin{aligned} & \text { DENSITY } \\ & \text { (PROCTOR) } \\ & \text { AASHO T-99 } \end{aligned}$	$\begin{gathered} \mathbf{E}^{\prime} \\ \mathbf{p s i} \\ (\mathbf{k P a}) \end{gathered}$	DR	HEIGHT OF COVER															
					$\begin{gathered} 1 \\ 0.3 \end{gathered}$	$\begin{gathered} 2 \\ 0.6 \end{gathered}$	$\begin{gathered} \hline 4 \\ 1.2 \end{gathered}$	$\begin{gathered} 6 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 8 \\ 2.4 \end{gathered}$	$\begin{aligned} & 10 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 15 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 20 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 25 \\ & 7.6 \end{aligned}$	$\begin{aligned} & \hline 30 \\ & 9.1 \end{aligned}$	$\begin{gathered} 35 \\ 10.7 \end{gathered}$	$\begin{gathered} \hline 40 \\ 12.2 \end{gathered}$	$\begin{gathered} 45 \\ 13.7 \end{gathered}$	$\begin{gathered} 50 \\ 15.2 \end{gathered}$		
Manufactured Granular Angular	CLASS I		90\%	$\begin{gathered} 3,000 \\ (20700) \end{gathered}$	$\begin{gathered} 51 \\ 41 \\ 32.5 \\ 25 \end{gathered}$		$\begin{aligned} & \mathrm{n} / \mathrm{r} \\ & \mathrm{n} / \mathrm{r} \\ & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.7 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.9 \\ & 0.9 \\ & 0.8 \end{aligned}$	1.1 1.1 1.1 1.0	$\begin{aligned} & 1.4 \\ & 1.3 \\ & 1.3 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.5 \\ & 1.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.8 \\ & 1.7 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.2 \\ & 2.2 \\ & 2.1 \end{aligned}$
Clean Sand \& Gravel	CLASS II	90\%	$\begin{gathered} 2,000 \\ (13000) \end{gathered}$	$\begin{gathered} 51 \\ 41 \\ 32.5 \\ 25 \\ \hline \end{gathered}$		n / r n / r 1.0 1.0	$\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.7 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.6 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.6 \\ & 0.6 \\ & \hline \end{aligned}$	1.0 1.0 1.0 0.9	1.3 1.3 1.3 1.2	1.7 1.7 1.6 1.5	2.0 2.0 1.9 1.8	$\begin{aligned} & 2.3 \\ & 2.3 \\ & 2.2 \\ & 2.1 \\ & \hline \end{aligned}$	2.7 2.6 2.6 2.4	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 2.9 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.3 \\ & 3.2 \\ & 2.9 \\ & \hline \end{aligned}$	
		80\%	$\begin{gathered} 1,000 \\ (7000) \end{gathered}$	$\begin{gathered} 51 \\ 41 \\ 32.5 \\ 25 \end{gathered}$		$\begin{aligned} & n / r \\ & n / r \\ & 2.0 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.4 \\ & 1.3 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 0.9 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \\ & 1.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.0 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \\ & 1.2 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.9 \\ & 1.8 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.6 \\ & 2.4 \\ & 2.1 \end{aligned}$	3.3 3.2 3.0 2.6	$\begin{aligned} & 4.0 \\ & 3.8 \\ & 3.6 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.5 \\ & 4.2 \\ & 3.6 \end{aligned}$	5.3 5.1 4.8 4.2	$\begin{aligned} & 5.9 \\ & 5.8 \\ & 5.4 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 6.4 \\ & 6.0 \\ & 5.2 \end{aligned}$	
Sand \& Gravel with Fines	CLASS III	90\%	$\begin{gathered} 1,000 \\ (7000) \end{gathered}$	$\begin{gathered} \hline 51 \\ 41 \\ 32.5 \\ 25 \end{gathered}$		n/r n / r 2.0 1.7	$\begin{aligned} & 1.5 \\ & 1.4 \\ & 1.3 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 0.9 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \\ & 1.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.0 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \\ & 1.2 \\ & 1.0 \end{aligned}$	2.0 1.9 1.8 1.6	$\begin{aligned} & 2.6 \\ & 2.6 \\ & 2.4 \\ & 2.1 \end{aligned}$	3.3 3.2 3.0 2.6	$\begin{aligned} & 4.0 \\ & 3.8 \\ & 3.6 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.5 \\ & 4.2 \\ & 3.6 \end{aligned}$	5.3 5.1 4.8 4.2	$\begin{aligned} & 5.9 \\ & 5.8 \\ & 5.4 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 6.4 \\ & 6.0 \\ & 5.2 \end{aligned}$	
		85\%	$\begin{gathered} 500 \\ (3500) \end{gathered}$	$\begin{gathered} \hline 51 \\ 41 \\ 32.5 \\ 25 \end{gathered}$		n / r n / r n / r n / r	$\begin{aligned} & \mathrm{n} / \mathrm{r} \\ & \mathrm{n} / \mathrm{r} \\ & 2.4 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.8 \\ & 1.6 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.9 \\ & 1.7 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.1 \\ & 1.8 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.4 \\ & 2.1 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.6 \\ & 3.2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.8 \\ & 4.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.0 \\ & 5.3 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 7.2 \\ & 6.4 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 8.9 \\ & 8.4 \\ & 7.5 \\ & 5.9 \end{aligned}$	10.2 9.6 8.5 6.7	$\begin{gathered} \hline 11.5 \\ 10.8 \\ 9.6 \\ 7.5 \end{gathered}$	$\begin{gathered} \hline 12.8 \\ 12.0 \\ 10.7 \\ 8.4 \end{gathered}$	
$\begin{aligned} & \text { Silt } \\ & \text { \& Clay } \end{aligned}$	CLASS IV	85\%	$\begin{gathered} 400 \\ (2760) \end{gathered}$	$\begin{gathered} \hline 51 \\ 41 \\ 32.5 \\ 25 \end{gathered}$		n / r n / r n / r n / r	$\begin{aligned} & \mathrm{n} / \mathrm{r} \\ & \mathrm{n} / \mathrm{r} \\ & 2.8 \\ & 2.1 \end{aligned}$	$\begin{aligned} & \hline 2.4 \\ & 2.2 \\ & 1.9 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.3 \\ & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.5 \\ & 2.2 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 2.9 \\ & 2.5 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.4 \\ & 3.8 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 5.8 \\ & 5.1 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 7.3 \\ & 6.3 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 9.4 \\ & 8.8 \\ & 7.6 \\ & 5.7 \end{aligned}$	$\begin{gathered} \hline 11.0 \\ 10.2 \\ 8.9 \\ 6.7 \end{gathered}$	12.6 11.7 10.1 7.6	$\begin{gathered} \hline 14.1 \\ 13.1 \\ 11.4 \\ 8.6 \end{gathered}$	15.7 14.6 12.7 9.5	

[^0]
Dimensions in Inches

24	25.8	0.80	24.2
30	32.0	0.98	30.0
36	38.3	1.18	35.9
42	44.5	1.37	41.6

Nomina Size	Avg. $0 . \mathrm{D}$	Wall Thickness	$\begin{aligned} & \text { Avg. } \\ & \text { I.D. } \end{aligned}$
PR 80 (DR51)			
18	19.5	0.38	18.7
20	21.6	0.42	20.8
24	25.8	0.50	24.8
30	32.0	0.63	30.7
36	38.3	0.75	36.8
42	44.5	0.87	42.6
48	50.8	1.00	48.7

PR 100 (DR41)
PR 235 (DR18)

14	15.3	0.37	14.6	14	15.3	0.85	13.6
16	17.4	0.43	16.6	16	17.4	0.97	15.5
18	19.5	0.48	18.5	18	19.5	1.08	17.3
20	21.6	0.53	20.5	20	21.6	1.20	19.2
24	25.8	0.63	24.5	24	25.8	1.43	22.9
30	32.0	0.78	30.4				
36	38.3	0.93	36.4	PR $\mathbf{3 0 5}$	(DR14)		
42	44.5	1.09	42.2	14	15.3	1.09	13.1
48	50.8	1.24	48.2	16	17.4	1.24	14.9

PR 165 (DR25)

14	15.3	0.61	14.1
16	17.4	0.70	16.0
18	19.5	0.78	17.9
20	21.6	0.86	19.9
24	25.8	1.03	23.7
30	32.0	1.28	29.4
36	38.3	1.53	35.2

PR 125 (DR32.5)

Dimensions in Millimetres

Nominal	Avg.	Wall	Avg.
Size	O.D.	Thickness	I.D.

PR 80 (DR51)

450	495.3	9.7	475.9
500	548.6	10.8	527.0
600	655.3	12.8	629.6
750	812.8	15.9	780.9
900	972.8	19.1	934.7
1050	1130.3	22.2	1082.8
1200	1290.3	25.3	1236.2

PR 100 (DR41)

350	388.6	9.5	369.7
400	442.0	10.8	420.4
450	495.3	12.1	471.1
500	548.6	13.4	521.8
600	655.3	16.0	623.3
750	812.8	19.8	773.2
900	972.8	23.7	925.3
1050	1130.3	27.5	1071.4
1200	1290.3	31.5	1223.0

Nominal Avg. Wall Avg. Size O.D. Thickness I.D.

PR 165 (DR25)

350	388.6	15.5	357.5
400	442.0	17.7	406.6
450	495.3	19.8	455.7
500	548.6	21.9	504.7
600	655.3	26.2	602.9
750	812.8	32.5	747.8
900	972.8	38.9	895.0

PR 235 (DR18)

350	388.6	21.6	345.4
400	442.0	24.6	392.9
450	495.3	27.5	440.3
500	548.6	30.5	487.6
600	655.3	36.4	582.5
PR	305 (DR14)		
350	388.6	27.8	333.0
400	442.0	31.6	378.8

PR 125 (DR32.5)

600	655.3	20.2	615.0
750	812.8	25.0	762.8
900	972.8	29.9	912.9
1050	1130.3	34.8	1056.6

R = Pressure Rating
Standard laying length is 20^{\prime} (6.1 metres). Gasket is factory installed into bell groove*.

SALES AND CUSTOMER SERVICE

International Customers contact IPEX Inc.
Export Department
6810 Invader Crescent
Mississauga, Ontario
Canada L5T 2B6
Tel: (905) 670-7676
Fax: (905) 670-1512
Email: export@ipexinc.com

Canadian Customers call IPEX Inc.
Toll free: (866) 473-9462
www.ipexinc.com
U.S. Customers call IPEX USA LLC

Toll free: (800) 463-9572
www.ipexamerica.com

About IPEX
IPEX is a leading supplier of thermoplastic piping systems. We provide our customers with one of the largest and most comprehensive product lines. All IPEX products are backed by over 50 years of experience. With state-of-the-art manufacturing facilities and distribution centers, the IPEX name is synonymous with quality and performance.

Our products and systems have been designed for a broad range of customers and markets. Contact us for information on:

- Acid waste systems
- PVC, CPVC, PP, FR-PVDF, ABS, PEX and PE pipe and fittings ($1 / 4^{\prime \prime}$ to $48^{\prime \prime}$)
- Industrial process piping systems
- Double containment systems
- High purity systems
- Municipal pressure and gravity piping systems
- Plumbing and mechanical piping systems
- Electrical systems
- Telecommunications and utility piping systems
- Irrigation systems
- PE Electrofusion systems for gas and water

This literature is published in good faith and is believed to be reliable. However, IPEX does not represent and/or warrant in any manner the information and suggestions contained in this brochure. Data presented is the result of laboratory tests and field experience.

IPEX maintains a policy of ongoing product improvement. This may result in modifications of features and/or specifications without notice.

[^0]: 1. Defilection values shown include effect of H 2 O live load and dead load.
 2. External loading based upon a prism load of soil weight of 120 lbs . per cubic foot ($1900 \mathrm{~kg} / \mathrm{m}^{3}$).
 3. Bedding classifications correspond to ASTM D2321.
 4. The defiection lay factor is 1.0 for a prism toad.
 5. DR18 deflections have not been shown because they are insignificant in most cases.
 6. Recommended maximum deflection is 7.5%

 Contact IPEX for applications where greater deflections are anticipated.
 7. n / r - not recommended for H 20 live load (0 k with dead load)

